• Chemistry: KMgCl3 - 6H2O, Hydrated Potassium Magnesium Chloride.
  • Class: Halides
  • Uses: As a source of potash and a minor ore of magnesium and as mineral specimens.
  • Specimens

Carnallite is named for Prussian mining engineer, Rudolph von Carnall. It forms in marine evaporite deposits where sea water has been concentrated and exposed to prolonged evaporation. Carnallite precipitates with other potassium and magnesium evaporate minerals such as sylvite, kainite, picromerite, polyhalite and kieserite. Massive beds of carnallite are found but crystals are rare. The crystals will unfortunately absorb water from humid air (a process called deliquescence). This process can be eased by storing specimens in sealed dry containers.

Carnallite is an important source of potash, an invaluable fertilizer. Sylvite is the more important source of potash, but carnallite makes a significant contribution. Carnallite's magnesium output is of much lesser importance world wide but is still Russia's most significant source. Potassium is actually a common element, but unfortunately it is bound up in insoluble silicate minerals such as potassium feldspars. In order for potassium to be useful as a fertilizer it needs to be in a soluble form and thus soluble potassium salts are the source of choice.

These minerals are not that easy to form because evaporite minerals such as carnallite and sylvite as it turns out are some of the last minerals to evaporate from sea water. Minerals such as calcite, dolomite, gypsum, anhydrite and halite crystallize first in roughly that order. The conditions that must exist in order to have potassium and magnesium salts form involve having sea water contained in a cut off, but not completely isolated basin similar to the Black Sea. However the Black Sea does not form carnallite because it is not located in a warm enough climate as intensive evaporation is needed (this is an evaporite mineral after all). The basin must also not allow the concentrated brine to leave the basin so as to continually increase its salinity. The brine will sink to the bottom of the basin and allow fresher water to enter the basin which brings more magnesium into the basin. This has the effect of prolonging the crystallization of the salts and increasing the salinity of the brine. If evaporation does not progress this way, then the minerals listed above may fill the basin before the potassium salts have a chance to crystallize.

This scenario for potassium and magnesium salt formation is not observable today because current day basins such as the Black Sea, Hudson Bay, Persian Gulf, Red Sea, Baltic Sea or Sea of Japan have either the wrong shape or the wrong climatic conditions. But this was not always the situation in the geologic past as numerous ancient potassium and magnesium salt deposits have been found. Specifically the Permian, Devonian and Carboniferous time periods were excellent times for such basins and they are responsible for most of the worlds evaporite deposits. Most notable potassium and magnesium salt deposits are found in Carlsbad, New Mexico; the Paradox Basin in Colorado and Utah; deposits in Strassfurt, Germany; the Perm Basin, Russia and the Williston Basin in Saskatchewan, Canada.

Carnallite is relatively easy to distinguish from other evaporate minerals. Its taste is bitter and it has no cleavage, unlike halite. Carnallite is extremely light with a specific gravity of only 1.6 and it also shows a violet flame result when it is put in a gas flame due to its potassium content, unlike kieserite and other non-potassium salts.


  • Color is white, colorless or yellow; rarely blue. Hematite inclusions may color specimens reddish.
  • Luster is vitreous to greasy, resinous or dull.
  • Transparency: Crystals are transparent to translucent.
  • Crystal System is orthorhombic; 2/m 2/m 2/m.
  • Crystal Habits are typically granular and massive, sometimes fibrous. Individual crystals are rare, but when seen are pseudo-hexagonal and tabular.
  • Cleavage is absent.
  • Fracture is conchoidal.
  • Hardness is 2.5
  • Specific Gravity is approximately 1.6 (light even for translucent minerals).
  • Streak is white.
  • Other Characteristics: Bitter taste, deliquescent (meaning it can absorb water from the air), fluorescent and can color a flame violet (due to potassium).
  • Associated Minerals include halite, anhydrite, dolomite, gypsum, kainite, kieserite, polyhalite, sylvite and other more rare potassium evaporite minerals.
  • Notable Occurrences include Carlsbad, New Mexico; Western Texas; Colorado and Utah, USA; Strassfurt, Germany; Ural Mountains, Russia; Iran; China; Tunisia; Spain; Mali; Ukraine and Saskatchewan, Canada.
  • Best Field Indicators are environment of formation, lack of cleavage, associations, density, deliquescence, fracture and taste.
CARNALLITE specimens:
(hover for more info)
CARNALLITE specimen clt-1
$ 36.00
Dims:0.5x0.3x0.2" (1.3x0.8x0.5 cm)
Wt: 0.03oz. (0.7g)
Near Carlsbad, Eddy cty., New Mexico
This small thumbnail specimen consists of a crystalline mass of carnallite. While crystal faces are plentiful on this specimen, it is a partial crystal-its orthorhombic form cannot be ascertained. It is colorless and transparent, with a vitreous to greasy luster. It is fluorescent dark purple in short wave ultraviolet light, but does not show the phosphorescence this species is sometimes noted for.
no photo
clt-1 ($ 36.00)
Near Carlsbad, Eddy cty., New Mexico


Copyright ©1995-2023 by Amethyst Galleries, Inc.